Non-rigid Image Registration with SαS Filters
نویسندگان
چکیده
In this paper, based on the SαS distributions, we design SαS filters and use the filters as a new feature extraction method for non-rigid medical image registration. In brain MR images, the energy distributions of different frequency bands often exhibit heavy-tailed behavior. Such non-Gaussian behavior is essential for non-rigid image registration but cannot be satisfactorily modeled by the conventional Gabor filters. This leads to unsatisfactory modeling of voxels located at the salient regions of the images. To this end, we propose the SαS filters for modeling the heavy-tailed behavior of the energy distributions of brain MR images, and show that the Gabor filter is a special case of the SαS filter. The maximum response orientation selection criterion is defined for each frequency band to achieve rotation invariance. In our framework, if the brain MR images are already segmented, each voxel can be automatically assigned a weighting factor based on the Fisher’s separation criterion and it is shown that the registration performance can be further improved. The proposed method has been compared with the free-form-deformation based method, Demons algorithm and a method using Gabor features by conducting non-rigid image registration experiments. It is observed that the proposed method achieves the best registration accuracy among all the compared methods in both the simulated and real datasets obtained from the BrainWeb and IBSR respectively.
منابع مشابه
بهبود سرعت "انطباق مبتنی بر روش برش گراف" جهت انطباق غیر صلب تصاویر تشدید مغناطیسی مغز
Image processing methods, which can visualize objects inside the human body, are of special interests. In clinical diagnosis using medical images, integration of useful data from separate images is often desired. The images have to be geometrically aligned for better observation. The procedure of mapping points from the reference image to corresponding points in the floating image is called Ima...
متن کاملCompensation of brain shift during surgery using non-rigid registration of MR and ultrasound images
Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...
متن کاملRobust Nonrigid Multimodal Image Registration Using Local Frequency Maps
Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz tra...
متن کاملA Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملAn ITK implementation of a physics-based non-rigid registration method for brain deformation in image-guided neurosurgery
As part of the ITK v4 project efforts, we have developed ITK filters for physics-based non-rigid registration (PBNRR), which satisfies the following requirements: account for tissue properties in the registration, improve accuracy compared to rigid registration, and reduce execution time using GPU and multi-core accelerators. The implementation has three main components: (1) Feature Point Selec...
متن کامل